ILA1185A

TRIAC PHASE ANGLE CONTROLLER

The ILA1185A generates controlled triac triggering pulses and allows tachless speed stabilization of universal motors by an integrated positive feedback function. Typical applications are power hand tools, vacuum cleaners, mixers, light dimmer and other small appliances.

- Supply Power Obtained from AC Line
- Can be used with 220 V/50 Hz or 110 V/60 Hz
- Low Count/Cost External Components
- Optimum Triac Firing (2nd and 3rd Quadrants)
- Repetitive Trigger Pulses when Triac Current is Intenupted
- by Motor Brush Bounce
- Triac Current Sensing to Allow Inductive Loads
- Programmable Soft-Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption; 6.0 mA

Pin Connection

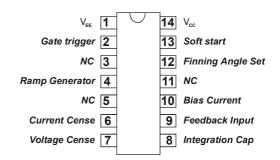
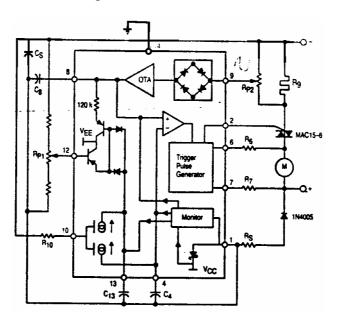



Figure 1. Representative Block Diagram

ILA1185A

Rating	Symbol	Value	Unit
Maximum Voltage Range per Listed Pin Pins3. 5,11	V _{pin}		
(not connected)	r	-20 to+20	
Pins 4,8.13		-V _{cc} to 0	V
Pin 2		-3.0 to +3.0	
Maximum Positive Voltage (No minimum value	V _{pin12}	0	
allowed; see current ratings)	V _{pin1}	0.5	
Maximum Current per Listed pin	I _{pin}		
Pin 1		±20	mA
Pin 6 and 7		±2.0	mA
Pin 9		±0.5	mA
Pin 10		±300	μA
Pin12		-500	μA
Maximum Power Dissipation (T _A =25°C)	PD	250	mW
Maximum Thermal Resistance, .Junction-to-Ambient	R _{0JA}	100	°C/W
Operating Ambient Temperature Range	T _A	0 to + 70	°C
Storage Temperature Range	Tstg	-55 to <+ 125	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, voltages are referenced to Pin 14 (ground) unless other noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply					
Zener Regulated Voltage,					
(Vpin1) I _{pin1} = 2.0 mA	-V _{CC}	-9.6	-8.6	-7.6	V
Circuit Current Consumption. Ipin1	-I _{CC}	-2.0	-1.0	-	mA
V _{pin1} =-6,0V,I _{pin2} =0A					
Monitoring Enable Supply Voltage (V _{EN})	V_{pin1EN}	V _{CC} +0.2		V _{CC} +0.5	V
Monitoring Disable Supply Voltage (V _{DIS})	V _{pin1DIS}	V _{EN} +0.12		V _{EN} +0.3	
Phase Set					
Control Voltage Static Offset V _{pin3} – V _{pin12}	V _{off}	1.2	-	2.0	V
Pin 12 Input Bias Current	I _{pin12}	-200	-	0	nA
V _{pin4} – V _{pin12} Residual Offset	-	-	180	-	mV
Soft-Start Capacitor Charging Current	I _{pin13}	-17'	-14	-11	μA
R_{pin10} = 100 k Ω V _{pin13} from -Vcc to - 3.0V					
Sawtooth Generator					
Sawtooth Capacitor Discharge Current					
R ₁₀ =100 kΩ, Vpin4 from -2.0 to -6.0V	I _{pin4}	67	70	73	μA
Capacitor Charging Current	I _{pin4}	-10	-	-1.5	mA
Sawtooth -High Voltage (V _{pin 4})	V _{HTH}	-2.5	-1.6	-1.0	ν.
Sawtooth Minimum Low Voltage (Vpin4)	V _{LTH}	-	-7.1	-	V

2

INTEGRAL

ILA1185A

ELECTRICAL CHARACTERISTICS (T_A = 25°C, voltages are referenced to Pin 14 (ground) unless other noted.)

(ground) unless other noted.)					
Characteristics	Symbol	Min	Тур	Max	Unit
Positive Feedback					
Pin 9 Input Bias Current, $V_{pin9} = 0$	I _{Pin9}	-	2xl _{pin10}	-	V
Programming pin voltage related to Pin 1	V _{pin10}	1.0	1.25	1.5	
Transfer Function Gain $\Delta V_{pin8}/\Delta V_{pin9}$					
R ₁₀ =100 kΩ.ΔV _{pin9} =50 mV	A	-	75	-	
R ₁₀ =270 kΩ.ΔV _{pin9} =50 mV	A	-	36	-	
Pin 8 Output Internal Impedance	Z _{pin8}	-	120	-	kΩ
Trigger Pulse Generator					
Output Current (Sink) V _{pin2} =0V	I _{Pin2}	60	-	80	mA
Output Leakage Current V _{pin2} =+2.0V		-	-	4.0	μA
Output Pulse Width	t _P				
C ₄ =47nF, R ₁₀ =270kΩ		-	55	-	μS
Output Pulse Repetition Period	t				
C ₄ =47nF R ₁₀ =270 kΩ		-	420	-4	μS
Current Synchronization Threshold Levels Ipin6, Ipin7	I _{sync}	-40	-	+40	μA

PIN FUNCTION DESCRIPTION

Pin No.	Function	Description
1	V _{EE}	This pin is the negative supply for the chip and clamped at -8.6 V by an internal zener.
2	Gate Trigger Pulse	This pin supplies - 1.0V triac trigger pulse at twice the line frequency.
3	NC	Not connected.
4	Ramp Generator	The value of the capacitor at this pin determines the slope of the ramp.
5	NC	Not connected.
6	Current Sense	This pin senses if the triac is on, and if so, will disable the gate trigger pulse.
7	Voltage Sense	The internal timing of the chip is set by the frequency of the voltage at this pin
8	Integration Capacitor	This pin is the output of the feedback and the variation in voltage is averaged out by the capacitor.
9	Feedback Input	The change in load current is detected by the change in voltage across R9.
10	Current Program	The bias current for the circuit is determined by the resistor value at this pin.
11	NC	Not connected.
12	Phase Angle Set	The voltage at this pin sets the no-toad firing angle.
13	Soft-Start	The firing angle is slowly increased from 180° to the set value of Pin 12.
14	V _{CC}	Ground